Using Text Categorization Techniques for Intrusion Detection

نویسندگان

  • Yihua Liao
  • V. Rao Vemuri
چکیده

A new approach, based on the k-Nearest Neighbor (kNN) classifier, is used to classify program behavior as normal or intrusive. Short sequences of system calls have been used by others to characterize a program’s normal behavior before. However, separate databases of short system call sequences have to be built for different programs, and learning program profiles involves time-consuming training and testing processes. With the kNN classifier, the frequencies of system calls are used to describe the program behavior. Text categorization techniques are adopted to convert each process to a vector and calculate the similarity between two program activities. Since there is no need to learn individual program profiles separately, the calculation involved is largely reduced. Preliminary experiments with 1998 DARPA BSM audit data show that the kNN classifier can effectively detect intrusive attacks and achieve a low false positive rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Text Categorization Techniques for Intrusion Detection -- A N-Gram-Based Method

Text categorization techniques have been used in anomaly intrusion detection by Liao and Vermuri in USENIX 02 paper. [1] Another n-gram-based text categorization method proposed in this report is expected to improve the performance of intrusion detection system that implements Liao’s method.

متن کامل

Intrusion Detection using Text Processing Techniques with a Binary-Weighted Cosine Metric

This paper introduces a new similarity measure, termed Binary Weighted Cosine (BWC) metric, for anomaly-based intrusion detection schemes that rely on using sequences of system calls. The new similarity measure considers both the number of shared system calls between two processes as well as frequencies of those calls. The k nearest neighbor (kNN) classifier is used to categorize a process as e...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Moving dispersion method for statistical anomaly detection in intrusion detection systems

A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002